Swiss needle cast growth analysis, 2023

November 30, 2023

SNCC Research Plot Network

- New effort uses 102 plots from new SNCC plot network (installed 2013-2015)
 - Has greater geographic range (than GIS)
 - Indicative of current stands
 - Doesn't include stunted stands that will never become merchantable
 - Group I: 10-year remeasurement of 30% of network (in red)
 - Group2: 10-year remeasurement of 30% of network (in blue)
 - Group3: 10-year remeasurement of 30% of network (in green)

Stand level cubic volume growth loss, 1998-2008

 Growth loss is expressed relative to maximum foliage retention of plots within each growth period

Initial foliage retention (yrs)

Stand level cubic volume growth loss, 1998-2008 Combined, from 2011 publication

4

Stand level cubic volume growth, 2013-2019

CFV_PAI=a·(**BA**_{df}^b) · exp(c·**BA**_{ndf}) · **SI**_{adj}^d ·(1-exp(e+f · FR³)) *CFV estimated using Bruce and Demars vol eqn.*

Periodic annual cubic volume growth dependent on:

initial DF basal area (+)
basal area in other species (-)
Douglas-fir site index (+)
Douglas-fir foliage retention (+)

The site index problem

Dominant trees in infected stands have lost height increment due to SNC

- Calculated the Bruce (1981) site index for each plot
 - SI= f(Ht₄₀, age)
- Adjusted the SI using the 2014 Hann SNC ORGANON height modifier
 - Adjusted SI =
 - SI_A = f(Ht₄₀/(SNC Htmod), age)
 - $SI_A = SI/(I exp(b_0 + b_1 \cdot FR^3))$

Site index (from height-age pairs) vs. FOLRET, new network

Site index (from height-age pairs) vs. Folret, new network, adjusted

Stand level cubic volume growth loss, 2013-2019

Why is the growth loss lower? The theory...

- GIS plot network represented the 1998 population.
- New plot network represents the current population
- Many of the worst stands that were sampled in 1998 are no longer present on the landscape. Those stands have been harvested and not replanted to Douglas-fir.
- Unaccounted for changes in foliage retention over long measurement period
- If zones where those plots existed were replanted to DF, growth loss estimates would likely go back up.

Second growth period

- Original (full) model
- CFV_PAI=a·(BA_{df}^b) · exp(c·BA_{ndf}) · SI_{adj}^d ·(1-exp(e+f · FR³))
- Reduced model for limited dataset
- CFV_PAI=a·(BA_{df}^b) · exp(c·BA_{ndf}) ·(1-exp(f · FR³))

||

Second growth period, groups 1 and 2

 Results imply that the growth losses are better for moderate FR, worse for low FR

Sensitivity of response to FR term will be explored for full dataset

(1-exp(a+b·FR³))

(1-exp(b·FR³))

Initial foliage retention (yrs)

Second growth period, groups 1 and 2

- Using different powers on FR, estimated growth loss for the most impacted plots is looking similar
- In the long term, what matters most are how well the "moderate" plots are performing

Initial foliage retention (yrs)

X	MSE
1	180.4
1.5	181.7
2	187.7
2.5	195.3
3	201.4

Change in FOLRET during first period

- Growth fit is based on initial SNC conditions
- Improved FOLRET over 5yr period not accounted for
- Increase in FOLRET over period suggests improved conditions
- Analysis will need to account for FR at start and end of period...and perhaps use other means of interpolating estimated FR between measurements

What should be done for the finale?

- Given the long growing periods, the final analysis should wait for final spring 2026 foliar sampling to account for changes in foliage retention
- Rigorous testing and exploration of the FOLRET term
- Analysis will need to account for FR at start and end of period...and perhaps use other means of interpolating estimated FR between measurements
- Growth analysis should address cubic and Scribner volume losses, accounting for SNC-estimated changes in stem form

