# Swiss needle cast growth analysis, 2020

# **December 10, 2020**

Doug Mainwaring Gabriela Ritóková Dave Shaw

# Swiss needle cast growth analysis

- Stand level growth analysis—How much growth loss?
- Diameter and height growth modifiers for ORGANON
- Addition of SNC taper modifier to ORGANON

#### **SNCC Research Plot Network**

- New effort uses 102 plots from new SNCC plot network (2013-2018)
  - Has greater geographic range (than GIS)
  - Indicative of current stands
  - Doesn't include stunted stands that will never become merchantable





## Stand level cubic volume growth loss, 1998-2008

 Growth loss is expressed relative to maximum foliage retention of plots within each growth period



Initial foliage retention (yrs)

## Stand level cubic volume growth loss, 1998-2008 Combined, from 2011 publication



Stand level cubic volume growth, 2013-2019

 $CFV_PAI=a \cdot (BA_{df}^{b}) \cdot exp(c \cdot BA_{ndf}) \cdot Si_{adj}^{d} \cdot (1 - exp(e + f \cdot FR^{3}))$ 

**CFV estimated using Bruce and Demars vol eqn.** Doesn't account for taper differences

Periodic annual cubic volume growth dependent on:

initial DF basal area (+)
basal area in other species (-)
Douglas-fir site index (+)
Douglas-fir foliage retention (+)

#### The site index problem

Dominant trees in infected stands have lost height increment due to SNC

- Calculated the Bruce (1981) site index for each plot
  - SI= f(Ht<sub>40</sub>, age)
- Adjusted the SI using the 2014 Hann SNC ORGANON height modifier
  - Adjusted SI =
  - SI<sub>A</sub> = f(Ht<sub>40</sub>/(SNC Htmod), age)
  - $SI_A = SI/(I exp(b_0 + b_1 \cdot FR^3))$



#### Site index (from height-age pairs) vs. Folret, new network



#### Site index (from height-age pairs) vs. Folret, new network, adjusted



### Stand level cubic volume growth loss, 2013-2019



#### Why is the growth loss lower? The theory...

- GIS plot network represented the 1998 population.
- New plot network represents the current population
- Many of the worst stands that were sampled in 1998 are no longer present on the landscape. Those stands have been harvested and not replanted to Douglas-fir.
- Worst performing plots that resulted in high growth loss estimates are gone.
- If zones where those plots existed were replanted to DF, growth loss estimates would likely go back up.

# **Modifier equations for ORGANON**

- Numerous efforts made to produce equations which would adjust ORGANON diameter and height growth for SNC infection
- There has been a continuing problem with a difference between stand level cubic volume loss and ORGANON predictions of loss from treelist projections
- ORGANON has predicted less volume growth loss than the stand level analysis does

# **Original modifier equations for ORGANON**

 Based on a 20-yr projection of 10-20 yr old stands



#### **Dbh and height increment: Modifier Equations**

Estimate modifiers for both  $\Delta D$  and  $\Delta H$ :

 $\Delta D_{infected} = MOD \cdot \Delta D_{ORGANON}$  $\Delta H_{infected} = MOD \cdot \Delta H_{ORGANON}$ 

where

MOD = Measured (infected) growth/Predicted growth

=  $I - \exp(a_1 + a_2 \cdot FR^{\times})$ 

#### **Calibration of Modifier equations**

- For "healthy" plots with  $FR \ge 3$  yrs (n=30):
- Estimated calibration factor for each growth period (2013, 2014, 2015)
   MG=cal·OG

where MG=measured dbh or ht. growth OG=ORGANON estimated dbh or ht. growth

• For "infected" plots with FR<3 yrs (n=72):

Fit the following equation:  $MG = cal \cdot OG \cdot (1 - exp(a+b \cdot FR^3))$ 

#### **Dbh growth modifier**



#### Height growth modifier



#### **Calculation of potential height growth**

- HG<sub>ORGANON</sub>=PHG<sub>Dom</sub>· f(CCH,CR)
- In a simulation, height growth for each tree is based on it's potential height growth, which is based on it's growth effective age (GEA)
- For modeling data of a single period, GEA and potential height growth of a measured tree is the same whether infected or not.
- During multiple cycles of a simulation, GEA of an SNC-stunted tree falls further (and further) behind that of a healthy tree, and potential height growth for each cycle becomes larger and larger.
- When SNC modifier gets applied to a PHG that is becoming relatively larger with each cycle, the "growth loss" from SNC disappears

#### **Calculation of potential height growth**



#### **Calculation of potential height growth**

- HG<sub>ORGANON</sub>=PHG<sub>Dom</sub>· f(CCH,CR)
- In a simulation, height growth for each tree is based on it's potential height growth, which is based on it's growth effective age (GEA)
- For modeling data of a single period, GEA and potential height growth of a measured tree is the same whether infected or not.
- During multiple cycles of a simulation, GEA of an SNC-stunted tree falls further (and further) behind that of a healthy tree, and potential height growth for each cycle becomes larger and larger.
- When SNC modifier gets applied to a PHG that is becoming relatively larger with each cycle, the "growth loss" from SNC disappears

#### Solution to calculation of PHG within ORGANON

- PHG of trees in an infected stand was assumed to be equal to PHG of the trees as if the stand wasn't infected.
- ORGANON FORTRAN source code has been altered to maintain two separate height and height growth variables:
  - I) Uninfected height and height growth for calculation of GEA and potential height growth
  - 2) Infected (modified) height and height growth for producing correct values for HT, HCB, HT40, CCH

#### Testing stand level output from ORGANON

- Chose 10 stands from stand-level modeling database with the smallest residuals (initial ages 13-22 yrs; FR 1.45-2.5 yrs)
- Projected initial measurement treelists for 20 yrs with I) measured foliage retention; and 2) assumption of no SNC (SNC option turned off)
- Compared stand CFV PAI over 20 year period between options I) and 2) using a) new dlls; and b) old dlls.

#### **ORGANON**, stand level output

 ORGANON CFV output (without applying taper differences) similar to average of stand level estimate with and without SI



23

#### **ORGANON**, stand level output

• ORGANON CFV and BFV loss approximately equal



#### **Effect of SNC on taper**

- 86 trees from 18 GIS plots sampled for stem taper (disks = 1490)
- Sampled in 2015



#### **SNC** Taper results: incorporation into **ORGANON**

- ORGANON currently uses Walters and Hann segmented polynomial taper equation
- Walters/Hann doesn't fit the healthy trees of the SNC taper dataset well



#### **SNC** Taper results: incorporation into **ORGANON**

- Used Kozak model form to estimate taper of healthy trees within SNC taper dataset (ntrees = 9; ndisks=144)
- "healthy tree equation" y=x^(b<sub>0</sub>+b<sub>1</sub>·z<sup>2</sup>+b<sub>2</sub>·z<sup>0.5</sup>+b<sub>3</sub>·exp(z)+b<sub>4</sub>·dbh/ht)



#### **SNC** Taper results: incorporation into **ORGANON**

 Used Kozak model form to estimate ratio of upper stem DIB of infected trees to that predicted using equation for healthy trees





#### Vol. estimates with and without accounting for taper

#### • Using same 10 test stands...



30

